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Abstract

Considerable work during the past two decades has focused on modeling the structure of seman-
tic memory, although the performance of these models in complex and unconstrained semantic tasks
remains relatively understudied. We introduce a two-player cooperative word game, Connector (based
on the boardgame Codenames), and investigate whether similarity metrics derived from two large
databases of human free association norms, the University of South Florida norms and the Small World
of Words norms, and two distributional semantic models based on large language corpora (word2vec
and GloVe) predict performance in this game. Participant dyads were presented with 20-item word
boards with word pairs of varying relatedness. The speaker received a word pair from the board (e.g.,
exam-algebra) and generated a one-word semantic clue (e.g., math), which was used by the guesser
to identify the word pair on the board across three attempts. Response times to generate the clue, as
well as accuracy and latencies for the guessed word pair, were strongly predicted by the cosine similar-
ity between word pairs and clues in random walk-based associative models, and to a lesser degree by
the distributional models, suggesting that conceptual representations activated during free association
were better able to capture search and retrieval processes in the game. Further, the speaker adjusted
subsequent clues based on the first attempt by the guesser, who in turn benefited from the adjustment
in clues, suggesting a cooperative influence in the game that was effectively captured by both associa-
tive and distributional models. These results indicate that both associative and distributional models
can capture relatively unconstrained search processes in a cooperative game setting, and Connector is
particularly suited to examine communication and semantic search processes.
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1. Introduction

Retrieval from semantic memory is ubiquitous in cognitive tasks. For example, humans
retrieve concepts when they describe other concepts (e.g., kittens are young cats), assess
similarity or relatedness (e.g., cats and dogs are both pets), and recall items from a par-
ticular category (e.g., groceries, animals, etc.). Indeed, one might argue that every instance
of communication demands retrieval from semantic memory. Of course, understanding how
concepts are retrieved from semantic memory requires establishing a structural account of
how these concepts are organized in memory. Consequently, significant work in semantic
memory research has attempted to model how concepts are learned, stored, and organized,
by conceptualizing semantic memory through large-scale semantic networks (for a recent
review, see Siew, Wulff, Beckage, & Kenett, 2018) or high-dimensional vector spaces (for a
recent review, see Glinther, Rinaldi, & Marelli, 2019). Traditionally, computational accounts
of semantic memory have assumed context-free semantic representations, implying that there
is a single representation of each concept in memory that is not influenced by task demands.
However, there is now considerable evidence to suggest that retrieval from semantic memory
is inherently contextual (for a review, see Yee, Lahiri, & Kotzor, 2017) and depends upon
linguistic and task-based contexts within which words are retrieved. Therefore, it is important
to investigate how recent computational models of semantic memory accommodate different
types of task-based contexts that may influence retrieval and search processes to achieve the
task goal.

In order to study retrieval from semantic memory, it is critical to formalize the context
within which retrieval occurs. Some work in this domain has attempted to define the “con-
text” of semantic search in terms of the semantic category of the retrieval cue. For example,
Hills, Todd, and Jones (2015) showed how search processes in the semantic fluency task
(where individuals are asked to produce as many exemplars from a category, e.g., animals, as
possible within a given time period) mimic patterns of optimal foraging for food found among
animals in their natural environment. Other work has examined how “context” in the form of
multiple retrieval cues influences search processes, such as finding creative associations in the
remote associates test (RAT, e.g., Davelaar, 2015; Smith, Huber, & Vul, 2013) or navigating
from one word to another in semantic word games (e.g., Beckage, Steyvers, & Butts, 2012).
Although different tasks bring online different processes, formalizing the context of seman-
tic search via word games offers the opportunity to study different types of semantic memory
processing and how individuals modify their search and retrieval strategies in response to task
demands.

Word games have been considered fundamental tools to study the nature and structure of
language (Wittgenstein, 1953) and also have a rich history in natural language processing (for
a recent brief review, see Moskvichev & Steyvers, 2019), where the performance and success
of artificial systems are often tested through word games, such as Jeopardy (IBM Watson;
Ferrucci et al., 2010), chess (Deep Blue; Campbell, Hoane Jr., & Hsu, 2002), and Go (Alpha
Go; Silver et al., 2017). As discussed, word games have also proven to be useful tools to
explore semantic search processes. For example, Beckage et al. (2012) had participants navi-
gate from a randomly chosen word (e.g., anything) to a target word (e.g., pen) using a given
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set of candidate words at each step. They found that individuals were relatively successful
at finding such paths (73% success rate) and used the global structure of semantic memory
(modeled using word association norms, Nelson, McEvoy, & Schreiber, 2004) to play the
game. More recently, Fathan, Renfro, Austerweil, and Beckage (2018) used a similar game
to model the search process as a weighted random walk (RW) over nodes in a large memory
network.

Game-based studies represent an important case of complex choice or decision-based pro-
cesses operating over structural representations of semantic memory that likely differs from
the mechanisms underlying other semantic retrieval-based tasks, such as the semantic fluency
(Hills et al., 2015) or RAT task (Smith et al., 2013). Specifically, game-based tasks allow
for more flexibility and creative choices in semantic retrieval, compared to standard seman-
tic retrieval tasks, therefore offering a unique opportunity to investigate explicit semantic
retrieval processes in a relatively unconstrained manner. For example, although the search is
relatively unconstrained in the RAT (where individuals are asked to produce one word related
to three words, e.g., cottage, swiss, cake), there is typically one correct answer to RAT prob-
lems (e.g., cheese). Similarly, although individuals can produce semantically related words in
different ways within the semantic fluency task, they are restricted by the semantic category
(e.g., animals, vegetables, etc.). On the other hand, word games offer the opportunity to relax
these constraints and allow individuals to connect concepts in relatively complex and more
flexible ways. Indeed, Marrs, Straka, and Beckage (2017) have argued that human perfor-
mance in word games is not easily explained through random walk models and may require
additional considerations driven by semantic similarities between words.

Despite the potential to track complex search and retrieval processes, there are some lim-
itations to the game-based studies discussed above. Specifically, within the semantic word
games, attention is often directed to the navigational aspects of the game, that is, individuals
are specifically instructed to start from a particular word and navigate to the goal/target word,
therefore limiting the ways in which individuals may consider two words to be related. For
example, an individual may think virus and weather are connected through sickness, but in
the MindPaths game (Marrs et al., 2017), their performance depends on necessarily finding
a path from virus to weather through forced choice among a limited set of words (derived
from free association norms) that may or may not include the relationship they had origi-
nally inferred. The current study proposes an alternative game-based methodology to study
retrieval from semantic memory by constraining the overall context through the game struc-
ture but also ensuring that the search process remained relatively unconstrained. Importantly,
because there are multiple attempts between two agents in the game, we can also explore how
individuals interact to achieve the task goal.

The current study introduces the Connector game, a two-player semantic word game based
on the popular multiplayer word game, Codenames designed by Vlaada Chvitil in 2015 (see
https://czechgames.com/en/codenames/). Codenames won the Game of the Year award in
2016 (Veyra, 2016) and has since been published in 38 languages. Within research in natural
language processing, the format of Codenames has been recently adapted to investigate
associative creativity (Zunjani & Olteteanu, 2019), compare artificial bot performance on the
game when trained on modern distributional models such as word2vec and Global Vectors
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Speaker, type in a clue for EXAM and ALGEBRA:

ADORE YARN ANCHOR BURGLAR
speaker MATH
GIGGLE OUTFIT RUMOR DEPTH Guesser, type in your guesses for the clue MATH:
ALGEBRA
WRITE guesser
ALGEBRA WRITE ANGRY EXAM Incorrect guess! Speaker, type in another clue:
speaker TEST
INSTRUCTION PEN BETTER LEAD Guesser, type in your guesses for the clue TEST:
guesser
COUCH ABNORMAL BANDANNA VOID

Correct!

Fig 1. An experiment trial in Connector. The speaker is given two words from a 20-word board (exam and algebra)
and comes up with a one-word clue (math) that is delivered to the guesser. If the guesser fails to guess the word
pair in the first attempt, the speaker provides another clue (fest) and the guesser can attempt to identify the word
pair again (see "Procedure” section for details).

(GloVe; Kim, Ruzmaykin, Truong, & Summerville, 2019), and also evaluate various models
of associative meaning based on distributional principles (Shen, Hofer, Felbo, & Levy, 2018;
also see Xu & Kemp’s, 2010, work on the closely related Password game). Additionally,
Codenames has been used to develop educational tools to teach complex concepts and
vocabulary to students (Octaviana, Rahmah, & Puspitasari, 2019; Souza, Morais, & Girardi,
2018).

The Connector game differs from Codenames' and previous work in this area,” as all inter-
actions between players occur in real time, and both players work cooperatively to arrive at the
correct answer. In Connector, two players view a grid of 20 words and are randomly assigned
the roles of a speaker and guesser (see Fig. 1). For each trial of the game, the speaker is pro-
vided a word pair on the board (e.g., algebra-exam) and generates a one-word clue related to
both words (e.g., math) that would serve to help the guesser identify the two words. This clue
is then displayed to the guesser, who uses it to identify which two words on the board the
clue was most likely referring to. If the first attempt is unsuccessful, the speaker can provide
a second clue to the guesser for a particular word pair, with this process being repeated on a
third trial if the guesser is still unsuccessful. In this way, one is able to constrain the retrieval
context to the word pairs on the board, but the game also allows participants to freely search
their semantic space during the task in a social/cooperative context. Specifically, although the
first clue is entirely dependent on the search process of the speaker, subsequent second and
third clues can vary based on the responses of the guesser; hence, the paradigm allows for
investigating these cooperative interactions.

In addition to proposing a novel game-based method for examining retrieval from semantic
memory, the current study had three research goals. First, we were interested in evaluating
the predictive power of different semantic models in explaining performance in this game.
Previous work in this area has examined how associative semantic networks (Steyvers &
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Tenenbaum, 2005) created from free association norms (e.g., Nelson et al., 2004) can account
for word choice in word games (Beckage et al., 2012; Marrs et al., 2017). Association net-
work models represent the lexicon as a large memory network, where words are represented
via nodes, and semantic relationships are represented via edges, in line with early work by
Collins and Loftus (1975). The relationships are typically extracted using norms derived from
free association tasks where participants produce a single word (e.g., Nelson et al., 2004)
or multiple words that come to mind in response to a given cue (e.g., De Deyne, Navarro,
Perfors, Brysbaert, & Storms, 2019; Kenett, Kenett, Ben-Jacob, & Faust, 2011). Although
previous research has compared some network configurations (e.g., weighted vs. unweighted
networks, Fathan et al., 2018), no work has compared different associative norms within a
game-based task. Indeed, in addition to the widely used University of South Florida (USF)-
free association norms (further described below), there now exist more recent and larger
databases of association norms, such as the Small World of Words database (SWOW; De
Deyne et al., 2019). While the USF norms are based on a relatively smaller set of items (5000
cues) and only contain the primary free association response, SWOW is based on a larger set
of items (over 12,000 cues) and also records secondary and tertiary free association responses.
Importantly, it remains unknown whether there are differences in the extent to which these
norms can predict unconstrained semantic retrieval processes within a game-based setting.
Therefore, the present work provides a novel comparison across associative models derived
from two different free association databases, USF and SWOW norms, in this complex
game task.

In addition, although associative models have been successful in accommodating a consid-
erable number of findings on semantic memory retrieval (for a review, see Siew et al., 2018),
they have also been criticized because the associative information itself is generated through
semantic retrieval, that is, one is predicting semantic retrieval directly from explicit semantic
retrieval norms (Jones, Hills, & Todd, 2015). Therefore, given the potential overlap between
the retrieval processes in the free association task and the explicit retrieval involved in word
games, one may a priori expect associative models to perform relatively well in the present
game tasks. Of course, the counterargument here is that associative models contain unique
sources of information that are difficult to capture via purely linguistic corpora (see De Deyne,
Perfors, & Navarro, 2016), which may be particularly important within unconstrained seman-
tic tasks. In contrast to the associative models based on free association norms, within the past
decade, there has been an explosion of “distributional semantic models” (DSMs) that propose
explicit mechanisms for how humans learn word meaning from natural language. DSMs use
large-scale language corpora (e.g., Wikipedia database, Google News articles, etc.) to infer
semantic representations by applying complex learning algorithms to co-occurrence patterns
of words. DSMs have shown unprecedented success at explaining behavioral performance
across a variety of semantic tasks (for a recent review, see Giinther et al., 2019). Importantly,
DSMs represent a significant departure from traditional associative accounts, in which they
infer word meaning from distributional information present in language (compared to asso-
ciative information) and are typically derived from large text corpora (compared to free asso-
ciation norms). Therefore, a major research goal of this study was to evaluate whether modern
DSMs (word2vec and GloVe; described in the Methods section) can explain word choice in
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our relatively unconstrained semantic game task and how they compare to associative mod-
els. As noted above, one might a priori expect associative representations to better capture
the associative patterns in this game task, compared to DSMs because associative models are
directly constructed from human associative information. Therefore, if DSMs can achieve
comparable performance or actually provide a better account of observed patterns in this
word game, it would suggest that distributional information derived solely from natural lan-
guage corpora is sufficient to account for conceptual processing in this game. Alternatively,
if associative models do indeed outperform the DSMs, this may point to unique meaning-
related information present within the associative norms that may not be effectively captured
via DSMs trained on text corpora. As discussed earlier, although Shen et al. (2018) and Kim
et al. (2019) compared the performance of word2vec and GloVe models in their game-based
studies, they did not compare DSMs to associative models and also did not model real-time
player interactions in their work. Therefore, the present work adds to previous literature by
making novel comparisons across different classes of semantic models in a two-player coop-
erative word game.

Given that all responses in our game were made in real time, a second goal of this study was
to begin investigating the extent to which these semantic models can accommodate response
latencies, a relatively unexplored issue in past work using games to explore retrieval from
semantic memory. In particular, response latencies may provide useful information about the
search process, that is, faster responses may indicate that words are closer in semantic space or
there is lesser competition among words, whereas slower responses may indicate that words
are more distant in semantic space, or there is more competition among words. Given that
the format of the Connector game allows for unconstrained responses in the form of speaker-
generated clues, response latencies may be particularly useful in understanding the search and
retrieval process of the speaker.

The third goal of this project was to begin examining how interactions contribute to search
processes in this task. As discussed earlier, cooperative word games such as Codenames are
extremely popular in social settings and not only involve individual search processes but also
social skills such as perspective-taking and referential communication in order to retrieve
the right concepts from a shared semantic memory space. To understand the extent to which
players in Connector engaged in social collaboration and perspective-taking, we explored
the clues that the speaker provided the guesser after a failed first attempt. In this case, the
speaker is given information by the guesser to better understand the failed search attempt.
The speaker can use this information to provide a cue that should facilitate the guesser’s
retrieval on the next trial. For example, for the word pair exam-algebra, first clue math and
first incorrect guess algebra-pen, the speaker could use the knowledge of the first incorrect
guess and steer the guesser in the direction of the correct word, by providing a clue that is
closer to the word that was not guessed correctly (e.g., provide testing as a second clue to
steer the guesser closer to exam).

We report combined results from two experiments conducted with different sets of items.?
Across both experiments, we explored whether patterns of responses and response latencies in
clue generation and word guessing were predicted by estimates of semantic similarity derived
from different computational models of semantic memory.
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2. Methods

2.1. Participants

A total of 156 students (M, = 21.1 years, SD = 3.1) were recruited in dyads (N = 78)
from undergraduate courses at Washington University in St. Louis and compensated through
course credit for their participation. The mean years of education in the sample was 14.5
years (SD = 1.8), and the mean score on the Shipley Vocabulary Test was 33.23 (SD = 3.22).
Twelve participants were non-native English speakers, out of which only two indicated that
they learned English after the age of 5 and whose performance differed from the sample. Fur-
thermore, one participant did not comply with the game instructions and gave two-word clues
to the guesser. Therefore, we excluded the dyads to which these three participants belonged
from our final sample, which consisted of 75 dyads. The game was played in person, and we
explicitly asked participants within each dyad to confirm that they did not know each other
before playing the game.

2.2. Semantic models

2.2.1. Distributional models

As discussed earlier, DSMs typically use large-scale text corpora to approximate the
natural language environment and apply statistical techniques to infer semantic word rep-
resentations. Word2vec (Mikolov, Chen, Corrado, & Dean, 2013) is a three-layer neural
network-based DSM that comes in two versions: The skip-gram model is trained to predict
four context words before and after a particular target word in a sentence, whereas the contin-
uous bag-of-words model reverses this objective. Both versions of the word2vec model refine
representations using an error-driven learning mechanism. By training on millions of sen-
tences in a large text corpus, word2vec tends to develop very rich semantic representations,
which have proven to be useful inputs for several downstream natural language processing
and semantic tasks (Baroni, Dinu, & Kruszewski, 2014; Collobert & Weston, 2008; Mandera,
Keuleers, & Brysbaert, 2017). Another popular embedding model, GloVe was introduced
by Pennington, Socher, and Manning (2014). Although GloVe is a DSM, unlike word2vec,
GloVe constructs a word-by-word co-occurrence matrix and attempts to predict the ratio of
co-occurrence probabilities between words using a regression model. GloVe has been shown
to perform remarkably well at analogy tasks, word similarity judgments, and named entity
recognition (Pennington et al., 2014), similar to word2vec. Therefore, we assessed word2vec
(skip-gram version) and GloVe, compared to each other and the associative models (described
below). For all analyses, pretrained word2vec (skip-gram version) and GloVe models, both
trained on the English Wikipedia 2017 corpus (3 billion tokens) were used, which were
available from Kutuzov, Fares, Oepen, and Velldal (2017). These pretrained models were
processed via the pymagnitude package in Python available via Patel, Sands, Callison-
Burch, and Apidianaki (2018), and both models produced 300-dimensional word vector
representations.
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2.2.2. Associative models

We utilized two different databases of free association norms, namely, the USF norms
collected from over 6000 participants for 5018 cues by Nelson et al. (2004), and the more
recent SWOW norms collected from over 88,000 participants for 12,217 cues by De Deyne
et al. (2019). For each database, three different similarity measures were examined, based on
(a) associative strength (S), (b) positive pointwise mutual information (PPMI), and (c) ran-
dom walk (RW) measures.* As described in De Deyne et al. (2019), the S measure refers to
the probability of responding with a word given a particular cue. The PPMI measure takes
the general pattern of responses across all cues into account when considering the simi-
larity between words, thus emphasizing responses that are unique to specific cues and de-
emphasizing responses that are produced for several cues. The RW measure considers not
only the direct responses produced to given cues but also any indirect paths or neighbors of
neighbors as would be consistent with a spreading activation mechanism (Collins & Loftus,
1975). The RW measure is based on a decaying random walk process, which estimates a
weighted sum of paths for a given pair of words, by assuming a damping parameter (alpha;
fixed at .75 as in De Deyne et al., 2019) that controls the extent to which similarity is driven
by shorter or longer paths. For details of exact implementations of these models, the reader
is referred to De Deyne et al. (2019). Importantly, the S, PPMI, and RW measures were cal-
culated for 4927 cues in the USF database (removing 90 cues with fewer than 100 responses
as in De Deyne et al., 2019) and 12,217 cues in the SWOW database. Furthermore, while the
USF database only contained primary responses to the cue, the SWOW database contained
primary, secondary, and tertiary responses to a given cue. Given the difference in the total
number of words between the USF and SWOW norms, we also explicitly evaluated the dif-
ferences across the models in additional analyses that restricted the SWOW dataset to the
same number of words as the USF dataset, as well as models that examined only primary
associations (see the Results section).’

2.2.3. Constructing word association spaces

Given that DSMs produce semantic vectors projected onto a high-dimensional space,
whereas the associative models produce “similarity” estimates between words based on free
association norms, there are limitations to the types of comparisons one can make with these
different representations. For example, although networks can be created via associative mod-
els (as in Kumar, Balota, & Steyvers, 2020; Steyvers & Tenenbaum, 2005, etc.), the criterion
used for defining path length in the majority of associative models is somewhat arbitrary (with
the exception of RW models, which consider walks of infinite length) and does not directly
map onto the notion of cosine similarity between word vectors within a semantic space as in
the DSMs. To address these differences, we converted the information derived from associa-
tive models above into Word Association Spaces (WAS; Steyvers, Shiffrin, & Nelson, 2005),
a technique that places words within a high-dimensional space by applying multidimensional
scaling on free association data. WAS utilizes principles similar to latent semantic analysis
(Landauer & Dumais, 1997) and applies singular value decomposition (a factor-analytic tech-
nique) to infer direct and mediated paths between words and in this way uncovers “latent”
semantic representations of words. In the present work, for each model derived from the
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USF/SWOW norms (i.e., S, PPMI, and RW), we computed a 300-dimensional word associa-
tion space,’ such that every word within the norms was now represented as a 300-dimensional
vector in this space, similar to the vectors produced by the DSMs, to effectively compare these
vectors in predicting game performance. All subsequent analyses were based on these seman-
tic word vectors derived via associative models or DSMs.

2.3. Materials

Ten boards of 20 words were created, with each board consisting of 10 word pairs. Word
pairs were classified as “close” (e.g., happy-sad), “medium” (e.g., army-drum), or “distant”
(e.g., cave-knight) based on tertiles defined via average cosine similarities between the words
based on all semantic models. Each board was then constructed to ensure that it contained
approximately three to four of these “close,” “medium,” and “distant” word pairs.” Among
these 10 word pairs on each board, we randomly selected one “close”, “medium”, and “dis-
tant” word pair to serve as the stimuli for the game task. Each board was used for three trials,
resulting in 30 word pairs across 10 boards for each participant dyad. Twenty different boards
with non-overlapping word pairs were used across the two experiments. At any given time
during the task, the boards were displayed page-wise to both the speaker and the guesser

using booklets.

3. Procedure

Participants were informed that they would be playing a two-player word game with
another participant and were introduced to each other before the experiment. Following this
introduction, participants were randomly assigned the role of a speaker and guesser for the
rest of the experiment. Both participants were handed a booklet of the boards to be used dur-
ing the study. Participants were instructed to turn the booklet page or respond only when the
computer program specified that it was their turn (speaker’s or guesser’s turn, respectively).
Both participants then proceeded to complete the practice session in the same room. After
the practice session, one of the participants moved to an adjoining room for the duration
of the task and viewed the same (shared) computer screen as their partner for the duration
of the experiment.

Each experimental trial began with instructions to both players to turn the page and view
the board (see Fig. 1). During this time, participants familiarized themselves with the 20
words on the board. Once the speaker was ready to see the word pair for clue generation, they
were instructed to turn their booklet page and press the return/enter key. When the speaker
turned their page, two words (e.g., exam-algebra) on the same board were highlighted in red
ink, and their task was to generate a clue that was related to both words and would serve as
a good clue for the guesser (who did not see the words in red ink). The speaker typed their
clue (e.g., math) and pressed the “9” key to end their response. After pressing 9, the screen
turned red for 500 ms to direct the guesser’s attention to the screen (to ensure that they were
indeed looking at the screen and not the board at this time). The screen then displayed the
speaker’s clue, instructing the guesser to identify two words on the board that matched this
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clue. After the guesser typed their guesses and pressed 9, the program evaluated whether the
guesses corresponded to the word pairs assigned to the speaker.® If the guessed words were
correct, the program congratulated the players and moved to the next word pair on the board.
If one or both of the guessed words were incorrect, the program informed both players that
the words were not guessed correctly (without specifying whether one or both words were
incorrect) and instructed the speaker to provide a second clue for the same word pair. This
process was repeated a third time if the guesser did not successfully guess the word pair in
the second attempt, resulting in at most three total attempts for each word pair. If the word
pair was not guessed in the final attempt, or when the word pairs were guessed correctly,
the program instructed the speaker to turn the page and view the next word pair for the same
board and advance the program. After completing three word pairs on one board, both players
were instructed to turn the page and view the next board. The experiment then proceeded in a
similar manner for the remaining nine boards.

4. Results

4.1. Game descriptives

Overall, participant dyads were very successful at the game, correctly guessing word pairs
with an overall success rate of 87% (SD = 9%) across all three attempts. Given that word pairs
were classified as “close,” “medium,” and “distant” (see Materials section), it is important to
evaluate the differences in performance across distance categories. First, “close” word pairs
were retrieved in significantly fewer attempts (M = 1.45, SD = 0.79), compared to “medium”
word pairs (M = 2.12, SD = 1.02), p < .001, and “medium” word pairs were retrieved in
significantly fewer attempts, compared to “distant” word pairs (M = 2.40, SD = 1.05), p =
.025. Table 1 reports the performance of the speaker and guesser across the three attempts
and distance levels in this word game. As shown, we also found that response times (RTs)
to generate clues and guesses were significantly faster for “close” word pairs, compared to
“medium” and “hard” word pairs. However, for both the accuracy and RT measures, the dif-
ferences were no longer significant in the third attempt, likely due to smaller sample sizes in
the third attempt, especially for close items.

Table 2 displays the three most frequent first clues and the proportion of speakers who chose
those clues across “close,” “medium,” and “distant” word pairs across both experiments. As
shown, although there was more agreement among speakers for the “close” word pairs, there
was still considerable overlap and agreement in the clues even for “medium” and “distant”
word pairs, suggesting that individuals were able to converge onto the same clues even when
words were not a priori closely related to each other.

4.2. Model accuracy in predicting speaker responses

For all regression-based analyses that follow, we used generalized or simple linear mixed
effect models (LME) from the Ime4 package (Bates, Maechler, Bolker, & Walker, 2015) in
the RStudio environment (R version 4.0.2 (2020-06-22), R Core Team, 2020). Total explained
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Table 1
Descriptive statistics about performance in the Connector game
Overall Mean response
Guesser Distance time (RT) to Guesser’s Mean
Accuracy Between Generate Clue RT in seconds Guesser
Attempt (SE) Words N in seconds (SE) (SE) Accuracy (SE)
First 0.41 (0.01) Close 75 19.28 (0.73) 21.67 (0.59) 0.69 (0.02)
Medium 75 30.80 (1.04)" 27.84 (0.62)" 0.32 (0.02)"
Distant 75 37.70 (1.29)* 32.20 (0.74)* 0.21 (0.02)*
Second 0.55 (0.01) Close 73 19.66 (1.28) 20.14 (1.21) 0.67 (0.03)
Medium 75 22.47 (1.00)" 24.23(0.94)" 0.54 (0.02)"
Distant 75 26.26 (1.18)* 26.84 (0.98)" 0.50 (0.02)*
Third 0.51 (0.02) Close 47 26.72 (2.76) 18.46 (2.56) 0.57 (0.06)
Medium 69 26.13 (1.60) 31.07 (2.84)" 0.56 (0.03)
Distant 71 29.16 (1.80) 26.95 (1.85) 0.45 (0.03)"

Note. N denotes total number of participants within each attempt and distance level. Standard errors are indi-
cated in parentheses. Means were calculated across all trials and differences were assessed using mixed effect
models.  indicates significant difference between close and medium word pairs, * indicates marginally significant
difference between close and medium word pairs, ™ indicates significant difference between medium and distant
word pairs, and * indicates marginally significant difference between medium and distant word pairs.

variance (R*) computed via the rsquaredGLMM function from the MuMIn package in R
(Barton, 2020)° was used to estimate the predictive power of the different models. In addi-
tion, to assess the variability in the obtained R? estimates, bootstrapped confidence intervals
were obtained for each fixed-effect R> estimate by sampling with replacement across 1000
simulations using the boot function (Canty & Ripley, 2020) in R.

In our basic semantic modeling approach, we assumed that the strategy chosen by the
speaker was to find the words closest to the average of the two target words. Although this
is a fairly simple model of the speaker task, we were interested in understanding whether the
models could potentially predict speaker responses via this simple search model. Specifically,
to investigate the extent to which each of the semantic models predicted the explicit clues
generated by the speaker, for each word pair, we first computed an “average” word vector by
averaging the 300-dimensional vectors for the individual words derived from the associative
and distributional models. Next, we rank-ordered words that were closest to this average vec-
tor by computing cosine similarities between the average vector and each word in the semantic
space!’. For the USF models, this space contained 4927 words, whereas for the SWOW and
DSM-based models, this space contained 12,217 words. After rank ordering the closest words
to the average vector, three measures were computed: fop clue score, average clue score, and
rank correlation. The top clue score estimated the accuracy of each model in predicting the
most frequent clue produced by the speakers for a given word pair (see Table 2). The average
clue score estimated the overall proportion of clues predicted by each of the models. Specif-
ically, we computed the total number of unique clues (n) produced for each given word pair
(M = 18.27, SD = 6.89) and then evaluated whether the topmost n predictions from each
of the models corresponded to these clues (for a similar approach, see Thawani, Srivastava,
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Table 2
Percentage occurrence of three most frequent first clues for word pairs in Connector
First Most Frequent Second Most Frequent Third Most Frequent
Type Word Pair Clue 1 (%) Clue 1 (%) Clue 1 (%)
Close happy-sad emotion (79.55) mood (9.09) feeling (4.55)
lion-tiger cat (54.55) animal (11.36) feline (9.09)
teeth-gums mouth (52.27) dentist (15.91) floss (9.09)
exam-algebra math (70.97) test (9.68) school (6.45)
collar-pants clothes (70.97) shirt, cloth, suit (6.45) apparel, attire, belt
(3.33)
gold-silver metal (45.45) element (13.64) bronze (6.82)
aircraft-birds fly (64.52) flight (25.81) sky (6.45)
chair-table furniture (36.36) dine (18.18) dinner (13.64)
jump-leap hop (34.09) frog (15.91) bounce (9.09)
egg-kitchen cook (48.39) bake, breakfast (12.90) fry (6.45)
bounce-bat baseball (45.16) ball (32.26) fly (6.45)
candle-wick flame (31.82) burn (18.18) light (15.91)
old-new age (31.11) opposite, time (13.33) generation (6.67)
sit-stand chair (27.27) position (22.73) action, desk, leg, etc.
(4.55)
adultery-perjury crime (38.71) sin (25.81) court (6.45)
apartment-homeless house (38.71) shelter (16.13) live, home (9.68)
bean-tea coffee (32.26) drink (19.35) café, green (6.45)
bubble-breeze blow (22.58) air (16.13) float, wind (9.68)
tree-oak wood (11.36) arbor, forest, leaf, plant acorn (6.82)
(9.09)
dance-circle spin (12.90) celebration, moshpit, art, circus, etc. (3.23)
move, party (6.45)
Medium calorie-famine food (58.06) hunger (16.13) starve (9.68)
sun-bowl round (34.09) breakfast, circle, picnic (4.55)
sphere (9.09)
almond-lunch food (45.16) snack (22.58) health (9.68)
feather-heavy weight (45.16) opposite (12.90) light (6.45)

army-drum
elm-rock

quick-glow
cigarette-onion
hand-birth
dream-bet
holy-kind

copy-graph

actress-bad

march (29.55)
nature (25.00)

firefly (25.00)
smell (32.26)
baby (22.73)
gamble 15.91)
jesus (13.64)

paper (19.35)

movie (19.35)

military (15.91)

forest, hard, landscape
(6.82)

flash (15.91)

gross (9.68)

body, midwife (11.36)

goal (11.36)

christian, priest, saint
(9.09)

excel, homework
(9.68)

boo (9.68)

band (11.36)

stone, tree, wood
(4.55)

light (13.64)

burn, odor, stink (6.45)

deliver (6.82)

lottery (9.09)

angel, religious,
righteous (4.55)

computer, data, math,
spreadsheet (6.45)

critic, rotten tomatoes
(6.45)

(Continued)
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Table 2
(Continued)
First Most Frequent Second Most Frequent Third Most Frequent
Type Word Pair Clue 1 (%) Clue 1 (%) Clue 1 (%)
stop-school bus (19.35) crosswalk, graduate graduation (6.45)
(9.68)
glass-cage container, Zoo aquarium, window barrier, trap (4.65)
(11.63) (6.98)
quiet-war peace (16.13) fight (9.68) ceasefire, silent, stealth
(6.45)
abnormal-giggle snort (12.90) funny, laugh, weird comedy, hysterical
(9.68) (6.45)
comedy-tourist laugh (12.90) entertain, show, travel activity, cruise, etc.
(6.45) (3.23)
feet-chapel jesus, kneel, wash, baptism, church, etc. aisle, cleanse, etc.
worship (6.82) (4.55) 2.27)
weird-trauma shock (6.82) abnormal, feeling, etc. accident, clown, etc.
(4.55) (2.27)
Distant astronaut-near space (48.39) moon (9.68) mars, distance (6.45)

east-short
economy-hundred
crust-boot
assist-definition
garage-bone

travel-ankle
cooking-communicate
brake-beginning
dusk-pendulum
cave-knight

olive-real

fight-corpse
rude-regret

snake-ash

stern-wind
giant-subtle

flat-alike
couch-void

dracula-toes

direction (31.82)
money (41.94)
mud (29.55)
dictionary (38.71)
dog (22.73)

walk (22.73)

recipe (29.03)
start (29.03)
time (25.81)
dark, dragon
(18.18)
food (15.91)
war (22.58)
mean (13.64)
poison (13.64)

sail (13.64)
opposite (11.36)

similar (16.13)
lazy (16.13)

blood (16.13)

vector (6.82)

dollar (9.68 )

dirt (11.36)

help (16.13)

doghouse, storage
(11.36)

basketball. feet, etc.
(4.55)

kitchen (9.68)

slow, stop, time (6.45)

clock (19.35)

medieval (15.91)

oil (11.36)

death (19.35)

negative (11.36)

black, death, Pokemon
(6.82)

boat, ship (11.36)

gentle (9.09)

pancake, paper, same
(6.45)

alone, empty, etc.
(16.15)

vampire (12.90)

asian, small, etc. (4.55)

number, rich (6.45)

shoe, dirty (9.09)

explain (9.68)

car, skeleton, etc.
(4.55)

achilles, boot, etc.
(2.27)

bake, chef, show (6.45)

abrup, car, etc. (3.23)

swing (16.13)

dungeon (9.09)

martini (9.09)

battle (9.68)

argument, fight (6.82)

dragon, hiss, etc.
(4.55)

harsh (9.09)

conspicuous, hint, etc.
(4.55)

angle, bland, etc,
(3.23)

comfort, pillow, etc.
(3.23)

count (9.68)
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Table 3
Model prediction scores and rank correlations for speaker’s first clue
Model Top Clue Average Rank
Score (%) Clue Score Correlation
(SE) (%) (SE) (SE)
University of South Florida-strength (USF-S) 6.67 (3.25) 18.91 (1.19) .27 (0.03)
USF- positive pointwise mutual information (PPMI) 6.67 (3.25) 21.22 (1.24) .29 (0.03)
USF- random walk (RW) 11.67 (4.18) 21.86 (1.26) .30 (0.03)
Small World of Words (SWOW)-S 15.00 (4.65) 15.88 (1.10) .24 (0.03)
SWOW-PPMI 18.33 (5.04) 19.80 (1.20) .27 (0.03)
SWOW-RW 21.67 (5.36) 20.62 (1.22) .27 (0.03)
Global Vectors (GloVe) 8.33 (3.60) 14.14 (1.05) .26 (0.03)
word2vec 3.33(2.33) 10.68 (.93) .20 (0.03)

& Singh, 2019). Therefore, this measure provided additional information about how well the
models captured performance beyond the most frequent clue.!! Finally, the rank correlation
estimated the extent to which the ranking of clues for a given word pair based on frequency
corresponded to the ranking predicted by the semantic models based on cosine similarity. For
example, for the word pair exam-algebra, the ranking of clues based on speaker probabilities
was math (0.71), test (0.10), school (0.07), calculus (0.03), equation (0.03), knowledge (0.03),
and study (0.03). The ranking of these clues based on cosine similarity of the average vec-
tor of the word pair from the SWOW-RW model was math (0.89), calculus (0.87), equation
(0.80), test (0.72), school (0.64), study (0.64), and knowledge (0.40). Therefore, Kendall’s tau
correlation of these ranks for exam-algebra was r = .39. Rank correlations were computed for
each word pair within each semantic model and then averaged across participants, to assess
whether the models captured the full pattern of responses produced by the speakers.

Table 3 displays the top clue score, average clue score, and rank correlation of each model
in predicting the first clues generated by the speaker. As shown, although accuracy in the
speaker task was overall low, there were significant differences across the models. Specif-
ically, the SWOW-RW model predicted the greatest proportion of top clues, compared to
word2vec (p < .001) and GloVe (p = .006), as well as USF-S (p = .002), USF-PPMI
(p = .002), and USF-RW (p = .040). Differences between SWOW-RW, SWOW-PPMI, and
SWOW-S were not significant (ps > .05). Finally, there were no significant differences across
the USF models, but the USF-RW model outperformed the word2vec model (p = .035).
Differences across word2vec and GloVe were not significant (p = .146). These patterns
of top clue score were generally consistent with the average clue scores and rank correla-
tions, although the USF-RW measure performed slightly better than the SWOW-RW model
in predicting average clue scores and ranks of these clues, but these differences were again
not significant (ps > .05). Overall, these findings suggest that the RW-based SWOW model
(SWOW-RW) outperformed other models, including the DSMs.

To effectively understand the differences across the USF and SWOW-based norms, some
additional analyses were conducted. Specifically, it is possible that the size of the normed
databases (i.e., 4927 words in USF vs. 12,217 words in SWOW) or the presence of secondary
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Table 4
Speaker model prediction scores for USF versus SWOW-based models
Top Clue Average Clue Rank

Dataset Size Model Score (%; SE) Score (%; SE) Correlation (SE)

4923 words USF-S 6.67 (3.25) 19.02 (1.19) .28 (0.03)
USF-PPMI 6.67 (3.25) 21.11 (1.24) .29 (0.03)
USF-RW 11.67 (4.18) 21.61 (1.25) .30 (0.03)
SWOW-R1-S 6.67 (3.25) 18.19 (1.17) .26 (0.03)
SWOW-R1-PPMI 13.33 (4.43) 21.98 (1.26) .28 (0.03)
SWOW-R1-RW 20.00 (5.21) 22.35 (1.27) .29 (0.03)
SWOW-S 11.67 (4.18) 21.14 (1.24) .27 (0.03)
SWOW-PPMI 13.33 (4.43) 25.67 (1.33) .29 (0.03)
SWOW-RW 18.33 (5.04) 24.75 (1.31) .30 (0.03)

12,217 words SWOW-R1-S 8.33 (3.60) 14.06 (1.05) .24 (0.03)
SWOW-R1-PPMI 18.33 (5.04) 18.81 (1.18) .26 (0.03)
SWOW-R1-RW 23.33 (5.51) 21.64 (1.25) .28 (0.03)
SWOW-S 15.00 (4.65) 15.88 (1.10) .24.(0.03)
SWOW-PPMI 18.33 (5.04) 19.80 (1.20) .27 (0.03)
SWOW-RW 21.67 (5.36) 20.62 (1.22) .27 (0.03)

and tertiary responses in SWOW may be contributing to the higher prediction accuracy of
SWOW-based models, compared to the USF-based models. To discriminate between these
possibilities, we compared the USF dataset of free associations to the SWOW dataset of
only primary associations (SWOW-R1) and the full database of primary, secondary, tertiary
responses (SWOW), by restricting these analyses to only the 4923 words common to both
norms. In this way, one could assess the predictive power of the different models on the same
dataset. As shown in Table 4 (top half), although accuracy slightly decreased in the SWOW
norms when the dataset was restricted, the SWOW database continued to outperform the
USF database. Specifically, the SWOW-R1-RW model had higher accuracy than USE-S (p =
.003), USF-PPMI (p = .003), and USF-RW (p = .065). Interestingly, the models based on
SWOW-R1 showed slightly higher accuracy than models based on the full SWOW dataset
when the dataset size was smaller, although these differences were not significant (ps > .05).

Next, we exclusively compared SWOW-R1 and SWOW on the full database of 12,217
words to assess whether there was any additional contribution of secondary and tertiary
responses above and beyond the primary associations contained within SWOW-R1. As shown
in Table 6 (bottom half), these analyses revealed that the RW-based models generally outper-
formed other models (i.e., S and PPMI-based) in predicting the top clue, although there were
no reliable differences between SWOW-R1-RW and SWOW-RW when the full database was
considered (p = .720). Average clue scores and rank correlations followed similar patterns.
Taken together, these analyses indicate that the SWOW norms were better able to capture
the speaker behavior in this game, compared to the USF norms, even when we controlled
for the difference in the dataset sizes across the two norms. This may reflect the recency of
the SWOW norms, as well as the potential difference across task demands when asking par-
ticipants to produce the first word or three words that come to mind. This issue is further
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Table 5

Examples of modal clues and model predictions

Word Pair Modal Clue Model Predicted Clue

gold-silver metal USF (S, PPMI, RW) bronze, copper, shiny
SWOW (S, PPMI, RW) platinum, shiny, metallic
GloVe bronze
word2vec bronze

war-quiet peace USF (S, PPMI, RW) tranquil, silent, peace
SWOW (S, PPMI, RW) silence, silent, silence
GloVe conflict
word2vec wary

exam-algebra math USF (S, PPMI, RW) analysis, calculus, calculus
SWOW (S, PPMI, RW) mathematics, calculus, math
GloVe mathematics
word2vec theorem

glass-cage container USF (S, PPMI, RW) shatter, crystal, mug
SWOW (S, PPMI, RW) shatter, captivity, trapped
GloVe steel
word2vec glaze

Table 6

Semantic relationships between first clues and word pairs

Clue Percentage

Clue Relationship (%) Example 1(Clue: Word Pair) Example 2 (Clue: Word Pair)
attributive 46.31 fly: birds-aircraft flame: candle-wick
hierarchical 20.53 animal: lion-tiger furniture: chair-table
coordinate 13.33 shirt: pants-collar military: army-drum
locative 10.88 court: perjury-adultery ocean: breeze-bubble
argument 4.62 bake: kitchen-egg suck: toes-Dracula

temporal 2.40 future: dream-bet summer: school-stop
idiosyncratic 1.91 ale: travel-ankle lesson: holy-kind

discussed in the General Discussion. Furthermore, given that there were no significant dif-
ferences across SWOW-R1 (consisting of only primary associations) and SWOW (consisting
of primary, secondary, and tertiary responses), for all analyses that follow, to ensure com-
parability with previous work based on the SWOW norms (e.g., De Deyne et al., 2019), we
only compare models based on the full dataset of primary, secondary, and tertiary SWOW
responses consisting of 12,217 words (SWOW) and the full dataset of USF norms consisting
of 4927 words (USF).

Table 5 displays examples of some word pairs and their modal clues alongside the pre-
dictions by the different models. As shown, although model prediction accuracy in this task
was relatively low, it is important to emphasize that the models generated reasonable predic-
tions in several cases (e.g., bronze for gold-silver, conflict for war-quiet, etc.), even though
these predictions did not map onto the modal response very well. Future work will examine
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how human raters assess the quality of model-generated clues compared to human-generated
clues, and whether the game can be successfully played with model-generated clues.

4.3. Predicting different types of semantic relationships

Given that we used a wide range of items in the study, the speaker task provided an oppor-
tunity to infer different types of semantic relationships between the words. For example,
consider the word pair lion-tiger. While one speaker may infer a hierarchical relationship
that both are animals, another speaker may instead identify another animal of the same cat-
egory, such as a leopard or jaguar. In order to further understand the extent to which dif-
ferent types of semantic relationships were successfully inferred by each semantic model,
we performed some additional analyses within the speaker task. For each first clue pro-
duced in the game, we classified the semantic relationship inferred by the speaker into the
following categories: attributive, argument, hierarchical, coordinate, locative, temporal, and
idiosyncratic based on Jouravlev and McRae’s (2016) classification. Clues were classified
as attributive if they described a property or feature of one or both of the word pairs, argu-
ment if they modified or performed an action on one or both of the word pairs, hierarchical
if they grouped the word pairs into a superordinate category, coordinate if they belonged to
the same category as one or both of the word pairs, locative if they highlighted a location-
based aspect of one or both of the word pairs, temporal if they highlighted a temporal aspect
of one or both of the word pairs, and idiosyncratic if the clues did not fall within any of
the above categories. Table 6 displays some examples of word pairs and clues that were
classified based on this criterion, along with the total percentage of these clues within the
dataset.

As is evident, the majority of the clues produced by the speaker reflected attributive, hier-
archical, coordinate, or locative relationships, and we, therefore, investigated whether there
were differences in the predictive accuracy of associative versus distributional models across
these semantic categories. For these analyses, we only examined the average clue score (that
calculates the proportion of n unique clues for a given word pair correctly predicted by the
models) because this measure resulted in greater accuracy overall across all models (as in
Table 5). As shown in Fig. 2, there were substantial differences in the extent to which seman-
tic models predicted clues corresponding to different semantic relationships.

First, all models were better at predicting coordinate clues, compared to other types of clues
(ps < .05), which may indicate that both associative and distributional models are more likely
to emphasize these types of relationships in their semantic representations. Second, qualita-
tively, the difference in predictive accuracy between associative models versus DSMs was
greater for coordinate (0.48 vs. 0.35) and hierarchical clues (0.18 vs. 008), compared to loca-
tive (0.12 vs. 0.09) and attributive (0.19 to 0.13) clues. However, the Relationship x Model
interaction was not reliable (p = .513), likely due to uneven distribution of items across the
different semantic relationships. Qualitative analyses indicated that these differences were
prominently driven by the “close” word pairs used in the game (e.g., chair-table, happy-
sad, gold-silver, etc.). Speakers successfully inferred superordinate/hierarchical relationships
between close word pairs (e.g., 80% of the speakers chose emotion as their first clue for
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Fig 2. Average clue prediction score within different models as a function of different semantic relationships. Error
bars indicate standard errors.

happy-sad) or chose exemplars/coordinate clues that were more related to both words (e.g.,
selecting house for homeless-apartment), which were reflected in the WAS created via USF
and SWOW. However, the DSMs failed to infer such relationships and their clues leaned more
toward words that typically fulfilled similar roles (i.e., coordinates) to only one of the words
(e.g., sorry for happy-sad, and bedroom for homeless-apartment, etc.) but not both the words,
which decreased their predictive accuracy across these semantic relationships. Although we
acknowledge that these relation classifications are post hoc, these preliminary analyses sug-
gest that the lack of hierarchical structure and different relationships within semantic repre-
sentations derived from DSMs may be an important predictor of how well DSMs perform
across semantic tasks.

4.4. Model accuracy in predicting guesser responses

To estimate the accuracy of each semantic model in correctly predicting the guesses of the
guesser, we obtained the topmost two guesses predicted by each semantic model based on
cosine similarity between the vector for each word on the board and the vector for the clue
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Table 7
Guesser performance scores

Average Guess

Model Score (%; SE)
USE-S 47.24 (0.92)
USF-PPMI 49.87 (1.04)
USF-RW 48.93 (1.01)
SWOW-S 58.00 (0.95)
SWOW-PPMI 59.33 (0.87)
SWOW-RW 60.33 (0.88)
GloVe 39.69 (0.78)
word2vec 41.11 (0.73)

produced by the speaker. Predictions were scored as a O (for no matches with the guesser’s
responses), 1 (for a single word match), or 2 (for both words matching) for each semantic
model. The maximum total score for a given model across all trials per participant dyad
could therefore be 2 (guesses)*30 (word pairs) = 60. We calculated the proportion of correct
predictions for each of the semantic models for a given participant dyad and then averaged
these scores across all participants to yield an average guess score per model ranging from 0
to 1.

As shown in Table 7, prediction accuracy was generally higher in the guesser task, com-
pared to the speaker task. This was expected, given that the task of the guesser was constrained
by both the 20-word board and also the speaker’s clue. Despite high accuracy overall, there
were significant differences across the models. LME analyses revealed that the SWOW-RW
and SWOW-PMI models outperformed all other models in predicting guesser responses (ps
< .05). The difference between SWOW-RW and SWOW-PPMI was marginal (p = .136).
Next, the USF-RW and USF-PPMI models performed similarly (p = .164) but outperformed
the USF-S model, as well as word2vec and GloVe (ps < .05). Finally, word2vec outperformed
GloVe in predicting guesser responses (p = .034).

4.5. Effect of semantic similarity on guesser accuracy

In addition to examining model predictions for explicit responses of the guesser, we also
examined whether the accuracy of the guesser in the game itself (i.e., correctly guessing
the word pair based on the clue in the first attempt) was predicted by the average semantic
similarity between the first clue and the two words. For example, for the word pair exam-
algebra, and the first clue math, we calculated the cosine similarity between math and exam,
as well as between math and algebra, in each of the semantic models. These two estimates
were then averaged to obtain the average similarity of the first clue (i.e., math) to the word pair
(i.e., exam-algebra). This similarity was then used to predict the accuracy of the guesser in
the first attempt. As shown in Fig. 3, the greater similarity between the first clue and the word
pair predicted greater guesser accuracy, suggesting that clues that were closer in semantic
space to the original word pairs produced more accurate responses from the guesser.
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Predicting Guesser Accuracy
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Fig 3. Mean accuracy in the guesser task as a function of average cosine similarity between the first clue and the

word pair.

Table 8
Explained variance in models predicting guesser accuracy

Model

R? (Fixed [CI}/Total)

English Lexicon Project (ELP) variables
USF-S

USF-PPMI

USF-RW

SWOW-S

SWOW-PPMI

SWOW-RW

GloVe

word2vec

1.86 [0.22, 2.76]/30.95
4.32[1.30, 6.46]/29.43
5.96 [2.57, 8.771/28.30
7.62 [3.76, 10.89]/28.85
6.78 [3.48, 9.82]/28.53
7.40 [3.90, 10.59]/28.16
8.35 [4.51, 11.83]/28.22
5.38 [2.49,7.541/32.78
5.63[2.50,7.971/31.98

ClI indicates bootstrapped 95% confidence interval for empirically obtained fixed R?.

LME analyses revealed that similarities from all models significantly predicted guesser
accuracy (ps < .001), after controlling for item-level lexical variables, that is, word length,
concreteness, and frequency for the first clue as well as the word pair, which were obtained
from the English Lexicon Project (Balota et al., 2007). Table 8 displays the total explained
variance in predicting guesser accuracy across the different models. As shown, the associative
models again explained significantly more variance than the DSMs, as indicated by the boot-
strapped confidence intervals around the R* estimates, and the SWOW-RW model explained

the most variance in this task.
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Fig 4. Mean standardized response time (z-RT) to generate first clue as a function of cosine similarity between the
target words within different associative and distributional models.

4.6. Effect of semantic similarity on speaker’s z-RTs

We also examined the extent to which different models accounted for response latencies in
the Connector game. To control for individual differences in RTs (see Faust, Balota, Spieler,
& Ferraro, 1999), RTs to generate the clue in the first attempt were standardized in the fol-
lowing manner. RTs below 250 ms and over 120,000 ms (i.e., 2 min) were first excluded,
followed by the exclusion of all RTs that fell above or below 3 standard deviations of each
participant’s mean RT. This process excluded 2.93% of the total trials. Next, RTs were stan-
dardized within participants, to produce standardized RTs (z-RTs), which were used for all
analyses. We evaluated the extent to which cosine similarity between the words predicted z-
RTs to generate the clue in the first attempt. As shown in Fig. 4, the semantic similarity was
negatively correlated with z-RTs, that is, the farther the two words were apart in the semantic
space (i.e., lower cosine similarity), the longer it took participants to generate the first clue.

LME analyses revealed that semantic similarity estimates from all models signifi-
cantly predicted z-RTs to generate the first clue. As shown in Table 9, the SWOW-
RW model was again the best model in predicting z-RTs and consistently outper-
formed the DSMs as well as the USF model, based on bootstrapped confidence interval
estimates.

4.6.1. Effect of semantic similarity on guesser’s z-RTs

We also examined whether z-RT's to generate the first guesses by the guesser were predicted
by the average distance between the first clue and the word pairs.

As shown in Fig. 5, cosine similarity between the first clue and word pair was negatively
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Table 9

Explained variance in models predicting speaker standardized response times (z-RTs) to generate clue

Model R?* (Fixed [CI]/Total) (%)
ELP 2.36[1.07,3.01]/22.31
USF-S 10.09 [7.09, 12.82]/21.54
USF-PPMI 9.58 [7.44, 11.45]/21.72
USF-RW 8.98/[6.93, 10.761/21.56
SWOW-S 11.16 [9.00,13.05]/22.70
SWOW-PPMI 10.53 [8.46, 12.34]/22.76
SWOW-RW 11.69 [9.51, 13.59]/22.68
GloVe 6.76 [4.85, 8.39]/22.64
word2vec 8.68 [6.49, 10.55]/22.24

Predicting Guesser z—RTs

Model

== word2vec
GloVe

- SWOW-S
SWOW-PPMI
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USF-RW
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Fig 5. Mean z-RT to produce first guess as a function of cosine similarity between the first clue and word pair
across different models.

correlated with guesser z-RTs, indicating that when the first clue was farther from the word
pair (i.e., lower cosine similarity), guessers took longer to make their guesses. This is also
consistent with the overall positive correlation of speaker and guesser latencies (r = .21, p <
.001), suggesting that the time course of identifying the word pairs for the guesser was related
to the clue generation process for the speaker. LME analyses predicting z-RTs to guess the
word pairs in the first attempt revealed that the average similarity between the first clue and
the word pairs significantly predicted z-RTs for all models (ps < .05), after controlling for
item-level variables (see Fig. 5. As shown in Table 10, the SWOW-RW model again explained
the most variance in z-RTs, although variance explained in guesser z-RTs was low overall.
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Table 10

Explained variance in models predicting guesser z-RT's to guess word pairs

Model R?* (Fixed [CI]/Total)
ELP variables 2.21[0.69, 3.171/20.09
USF-S 4.48 [1.88, 6.401/19.71
USF-PPMI 4.05 [1.51, 5.97]1/18.50
USF-RW 4.981[2.12,7.28]/18.57
SWOW-S 5.69 [3.02, 7.97]/18.54
SWOW-PPMI 6.14 [3.40, 8.67]/17.71
SWOW-RW 7.48 [4.51, 10.50]/17.41
GloVe 3.27[1.25, 4.58]/19.50
word2vec 4.48 [2.30, 6.17]/18.80

Similarity of First and Second Clues to
Guessed and Unguessed Words in the First Attempt

0.4
£o03
= Clue
£
s B ciue 1
2 0.2 B cue2
]
o
(3]
0.1
0.0

Guessed Word Ungueséed Word

Fig 6. Similarity of the first and second clues to the individual words before and after the guesser’s first attempt.
Error bars indicate standard errors.

4.6.2. Influence of interactions on second attempt performance

To examine whether patterns of performance differed across the attempts, we evaluated
whether the guesser’s likelihood of succeeding in the second attempt was dependent on the
nature of clues provided by the speaker and whether the speaker changed their strategy based
on the guesser’s first attempt. It is important to note here the goal of this section was to
explicitly identify critical interactive patterns in the game. Therefore, although model-based
results have been reported, in these analyses we emphasize the cooperative influences cap-
tured within Connector.

First, we examined whether the guesser’s first response changed the extent to which speak-
ers focused on the individual words within the word pairs, for trials on which the Guesser
correctly identified one of the words. As shown in Fig. 6, in the first attempt, when Speakers
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had no information from the Guesser, first clues (Clue 1) were closer to whichever word was
ultimately identified by the Guesser (“Guessed Word” in Fig.6), based on cosine similarity
between the clue and individual words (collapsed across all semantic models). However, after
the first guess, there was a significant shift in the produced clues. If the guesser correctly
identified only one of the words in the first guess and therefore incorrectly guessed the other
word (“Unguessed Word” in Fig. 6), second clues (Clue 2) were now closer to the unguessed
word compared to the guessed word (p < .001). For example, for the word pair exam-algebra,
if the first clue was math, and the guesser’s response was algebra-pen, then the second clue
provided by the speaker (e.g., festing) was closer to the unguessed word (e.g., exam), com-
pared to the guessed word (e.g., algebra). Therefore, speakers changed their search strategy
after the first attempt and chose clues that steered guessers toward the unguessed word. This
shift in clue similarity toward unguessed words was predicted by cosine similarities between
the clue and words in all the semantic models (ps < .05).

We also examined whether this shift in speaker strategy influenced the accuracy of the
guesser for trials on which the guesser correctly identified one of the words. Specifically,
LME analyses predicted guesser’s accuracy for the second guess attempt for a particular word
pair (e.g., exam-algebra, referred to as Wordl and Word2), with the following predictors:
(a) the similarity of the second clue provided by the speaker (e.g., testing, referred to as
Clue2) to Wordl (e.g., testing-exam, referred to as Clue2-Word1), and the (b) distance of
Clue2 to Word2 (e.g., testing-algebra, referred to as Clue2-Word2). We also included the
average distance of the first clue to the two words (e.g., the average distance between math-
exam and math-algebra) as a covariate, to control for the effects of Cluel on the guesser’s
accuracy in the second attempt. Further, given that Clue2 may also depend on the initial
guesses themselves, we separated the LME analyses by whether the guesser correctly guessed
Wordl, correctly guessed Word2, or guessed neither Word1 nor Word?2.

As shown in Fig. 7, when one word was guessed correctly but the other word was not
guessed in the first attempt, the guesser had higher accuracy in the second attempt if the
speaker provided second clues that were closer to the unguessed word (i.e., cosine similarity
between the second clue and unguessed word was high). These effects were predicted by all
the semantic models (ps < .05), although the SWOW-based PPMI and RW models generally
outperformed the DSMs and USF-based models in predicting guesser accuracy in the second
attempt. Finally, the third attempt followed similar patterns, although these analyses were
underpowered due to fewer data points (over 88% of the word pairs were guessed by the
second attempt by over half of the participants) and are therefore not reported. Overall, these
effects indicate that the speaker was adjusting the type of clues they provided based on the
guesser’s initial responses, and the degree of this adjustment influenced subsequent guesser
performance, suggesting a cooperative influence between speaker and guesser in the game.
This is particularly interesting since the guesser did not know on incorrect trials, which, if
either, of the two words, were guessed correctly. These results suggest an element of social
interaction within the Connector game, and also provide evidence that two-player word games
may be particularly suited to examine contextual influences on semantic search processes due
to their relatively unconstrained nature as well as the potential to study the interaction of
distinct semantic memory systems.
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Second Attempt Accuracy as a Function of
Similarity of Second Clue to Guessed and Unguessed Words
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Fig 7. Guesser’s second attempt accuracy predicted by cosine similarity between second clue and guessed and
unguessed target words.

5. General discussion

The present study investigated semantic search and retrieval processes in a novel cooper-
ative word game, Connector, and also evaluated the extent to which estimates of semantic
similarity derived from associative and distributional models explained performance in the
game. Although prior work has examined search processes within word games, past research
has only studied constrained memory search processes. For example, in the MindPaths game
(Marrs et al., 2017), players found paths from one word to another through forced choice at
each step, which may have restricted the actual search process. The Connector game intro-
duced in the current study overcomes these limitations and taps into more unconstrained
search processes operating on semantic memory representations, by having the speaker freely
select any clues that are related to word pairs on the board and having the word guesser guess
the word pairs based on their own interpretation of the clues. We now discuss some novel
contributions and future directions for this work.

5.1. Comparing SWOW and USF norms

The present study compared the predictive power of two different free association datasets
(USF and SWOW) in predicting player performance in Connector. Overall, the SWOW-based
associative models outperformed the USF-based models, even after controlling for differences
in dataset size. Importantly, the primary response dataset (SWOW-R1) also outperformed the
USF-based models, suggesting that the advantage of SWOW did not solely arise from cap-
turing secondary and tertiary associations. These model differences may reflect the recency
of the SWOW norms (which were collected from 2008 to 2021), compared to the USF norms
(published in 2004, collected much earlier), as well as differential task demands/instructions.
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First, regarding the recency differences, it is possible that the pattern of associations in
SWOW is simply more reflective of present-day associations among the general population.
Second, although one may expect the processes for generating primary associations to be
similar in USF versus SWOW, there were indeed differences in task instructions between
the two studies. Specifically, participants in the USF study were asked to write down the
first word that came to mind that was “meaningfully related or strongly associated to the
presented cue word.” In contrast, the SWOW study asked participants to respond with the
“first three words that came to mind.” Given that the USF study urged participants to produce
a single meaningful response, and the SWOW study asked participants to produce multiple
responses, it is possible that these instructions biased responses (De Deyne et al., 2019), which
in turn manifested in the model predictions examined in the current study. Finally, SWOW
is based on fluent English speakers, covering a more diverse population than USF (which is
restricted to native English speakers) which may have also influenced some of the differences
across the models derived from the two databases. Future work should further examine the
extent to which different instructions and the time period of data collection bias free asso-
ciation responses within different norms. Overall, however, the present findings show how
the SWOW-based models generally outperform the USF-based models in predicting game
performance.

Another important finding from the present work was that the RW-based SWOW model
(SWOW-RW) provided a better account of player behavior, compared to the PPMI-based
model (SWOW-PPMI) and associative strength-based model (SWOW-S). This suggests that
individuals not only use direct associative strength but also use indirect pathways to come
up with a response, similar to the metaphor of using spreading activation-based processes
(Collins & Loftus, 1975) to explore the semantic space. It is likely in the Connector game
that the explicit search across multiple words capitalizes on instances where indirect paths
can arrive at an appropriate clue or guess. This finding is consistent with prior work in the lit-
erature (De Deyne et al., 2019; Fathan et al., 2018) where RW models have been shown to suc-
cessfully capture game-based navigation of semantic space. Of course, given that the present
work only examined a RW-based process model, future work should investigate whether alter-
native search mechanisms such as local-global search and optimal foraging (Hills, Jones, &
Todd, 2012) may also be at play within unconstrained semantic tasks such as in Connector.

5.2. Comparing associative and distributional models

An important motivation for the present work was to compare the extent to which semantic
representations derived from associative and distributional models successfully accounted for
performance in the Connector game. Previous studies of game-based paradigms have exam-
ined the performance of players against only association-based network models (e.g., Beck-
age et al., 2012; Fathan et al., 2018) or only DSMs (e.g., Shen et al., 2018). In the present
study, we compared several associative models based on USF and SWOW databases as well
as two widely used DSMs in the extent to which they account for performance in the Con-
nector game. The SWOW-based associative models performed relatively better than distri-
butional models in this game task. Of course, one might already expect associative models
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to outperform DSMs since these associative models were constructed from free association
norms, although it is important to note that the differences in predictive power between USF
norms and DSMs were minimal. Importantly, one may be concerned about shared method
variance between the free association task and the task of finding clues or guessing word
pairs in the game. This may have contributed to the higher predictive power of the associa-
tive models, compared to the DSMs, which were instead trained on large language corpora.
However, it is also possible that free association represents unique conceptual information
that is not contained within linguistic corpora-based DSMs, and tasks that tap into such con-
ceptual processing (such as the speaker and guesser tasks in Connector) may benefit from this
representational overlap. Therefore, although comparing associative models to DSMs may be
problematic (for detailed arguments, see Jones et al., 2015), it is important to understand the
nature of the information contained within these representations, after controlling for differ-
ences in the representational format itself (see Kumar, Steyvers, Balota, 2021 for a discus-
sion). In the present work, we ensured that associative models and DSMs were compared in
the fairest way possible by constructing WAS and ensuring all words were represented within
a high-dimensional space across the two classes of models.

The present results highlight how associative models do indeed emphasize semantic rela-
tionships not well-represented within the DSMs and indicate that reliance on pure linguistic
corpora within the DSMs may not be sufficient to capture the variety of responses produced
by participants in the Connector game. Indeed, in addition to the linguistic content of free
associations, associative responses also tend to reflect experiences that evoke mental imagery
and emotional responses (De Deyne et al., 2021). It is possible that similar representations are
activated when speakers and guessers are searching through semantic space within the Con-
nector game, which the associative models tend to capture. DSMs have been criticized for
relying solely on linguistic corpora and therefore their inability to capture non-linguistic fea-
tures of meaning (Barsalou, 2016; De Deyne et al., 2016). Our results also shed light on some
additional aspects of meaning (e.g., hierarchical relationships) that may be readily appar-
ent to humans (and are therefore well-represented in the associative models) but are missing
from the DSMs. Within this context, associative models may provide an important behavioral
baseline or benchmark for comparisons across DSMs and may therefore be useful in assess-
ing the psychological plausibility of different DSMs (for a detailed discussion, see Kumar,
2021). Indeed, the present work highlights systematic differences across two popular DSMs
(GloVe and word2vec) in accounting for performance in the game, with GloVe outperforming
word2vec in the speaker task. Although error-driven distributional models such as word2vec
have been shown to outperform error-free learning models in other psycholinguistic tasks
(e.g., Mandera et al., 2017), it is possible that GloVe may be more sensitive to different fypes
of semantic relationships due to capturing more global patterns of co-occurrence, compared
to word2vec, which is trained to predict words within a local context window. This may have
contributed to the better performance of GloVe in the speaker task within the game. How-
ever, word2vec and GloVe appeared to perform at similar levels in the guesser task and in
accounting for the response latency patterns, suggesting that these models may also share
similar mechanisms to some degree (see Levy & Goldberg, 2014). Given that pretrained
models were used in this study, future work should look into how different hyperparameters
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influence the generated semantic representations to better understand the relative performance
of different distributional models, as well as explore more advanced language models.

5.3. Temporal signatures of semantic search

Another important contribution of the present work is the potential to examine tempo-
ral signatures of search within semantic memory via response latencies. Indeed, the present
analyses showed how semantic similarity between words significantly predicted the time
taken by participants to generate clues and guesses in Connector. Of course, the speaker
task may involve complex search processes that may reflect local and global search biases
and even show patterns of optimal foraging (Hills et al., 2012). Indeed, the present work
only examined one fairly simple search algorithm for the speaker based on vector “averag-
ing” which may be more effective for semantically closer words than distant concepts (see
Kumar, Garg, & Hawkins, 2021), and it is important to investigate alternative search algo-
rithms that may improve model performance in the speaker and guesser tasks. Future work
should focus on further understanding these search processes used by the speaker to navigate
the semantic space. Response-time data provide important constraints for model discrimi-
nation, and a process-driven model of semantic search should be able to accommodate the
patterns observed in the current task.

Although the associative and distributional models nicely predicted the speaker z-RTs, the
variance explained was relatively low for guesser z-RTs. This may be partly due to obtaining
a single estimate of response latency for the guesser responses in the current study, given that
there may be differences in how quickly an individual may select the first and second word in
the task. For example, it is possible that some clues lead guessers to quickly identify one of
the words but think more carefully about the second word. Although the present work cannot
speak to these differential search processes (due to paradigm constraints), future work will
focus on fully mapping out the search process of the speaker and guesser in the Connector
game.

5.4. Cooperative interactions in the Connector

Another important finding in this work was that the speaker and guesser collaborated to
successfully arrive at the correct answers in the game. Specifically, we found that the speaker
systematically selected clues in the second round that were biased toward the word that the
guesser had failed to guess in the first round. This finding is important in two ways. First,
it suggests that individuals constrained their search process based on the task context, and
chose unbalanced clues (i.e., not equally related to both words) as the task goal changed
during the course of the game. Second, the degree of adjustment in the form of the second
clue influenced the accuracy of the guesser in the second round, indicating that both players
successfully engaged in a form of referential communication during the game. While most
studies of search processes operating on semantic representations focus on individuals, lan-
guage has an inherent social function (Pinker, 2003, p. 27). The present study sheds light
on how individuals modify their search processes based on semantically relevant interactions
with other individuals (also see Xu & Kemp, 2010). The experimental design of the Connector
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affords opportunities to examine dyadic interactions via several recent models of pragmatic
reasoning and theory-of-mind (e.g., Frank & Goodman, 2012). Indeed, our other work inves-
tigates how individuals incorporate the other player’s perspective within the communicative
context of the game using pragmatic inference (Rational Speech Act models; Goodman &
Frank, 2016) models (see Kumar, Garg, & Hawkins, 2021). Additionally, exploring other
forms of social interactions that may influence search processes in complex semantic tasks
such as didactic dialogue, teaching, second language learning, translation, and so forth, is
also an important avenue for future research, and word games may be particularly suited
to shed light on these issues. For example, the Connector game would appear to be ideally
suited to explore the nature of shared semantic representations across friends, spouses, and
family members. In this way, the task can be used to further extend the burgeoning field of
shared distributed/cognitive representations (e.g., see Abel, Umanath, Wertsch, & Roediger,
2018; Hollan, Hutchins, & Kirsh, 2000). Indeed, the boardgame Codenames has recently been
adapted to examine pragmatic language use (Shen et al., 2018), develop an educational game
to teach physics to students in diverse school settings (Souza et al., 2018) and teach English
vocabulary to students in Indonesia (Octaviana et al., 2019), suggesting that there are several
research opportunities within the domain of cooperative word games.

In conclusion, the present study introduced a novel word game, Connector, to study rela-
tively unconstrained search and retrieval processes operating over semantic representations.
The results indicated that associative models based on random walk processes can better cap-
ture these search processes and interactions, compared to modern distributional models, as
reflected in responses and response latencies in this game task. In addition, player perfor-
mance in this cooperative word game is sensitive to indirect interactions and players alter
their search processes based on task demands and goals.
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Notes

1. In the original Codenames game, multiple players typically play in teams, and the
board has words assigned to different teams via colors. Therefore, the speaker (called
the spymaster in Codenames) must try to give clues for words that are relevant to their
own team while avoiding words that are relevant to the other team. Additionally, there
is an “assassin” word that the speakers and guessers must avoid. We simplify this game
to a two-person setting and eliminate teams/colors/assasins to ask targeted research
questions.

2. Shen et al. did not use the full board but instead asked participants to choose two words
from a set of three words and also did not model real-time interactions between players.
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Password (Xu & Kemp, 2010) is not based on Codenames and involves speakers pro-
viding one-word clues related to a word to guessers who make one-word guesses.

3. The only differences across both experiments were that we used different items and
counterbalanced the direction of presentation for word pairs in the second experiment.
However, we did not find any influence of word order in any of the analyses. Further,
only two analyses (clue prediction and guesser prediction) yielded significant interac-
tions between model estimates and experiment, and these were largely driven by item-
level differences (further discussed in the General Discussion). Therefore, in order to
provide the most generalizable estimates of model performance across items, we com-
bine results across the two experiments.

4. We thank Simon De Deyne for sharing the code for computing these similarity mea-
sures.

5. Initial analyses also compared “network”-based models based on free association

norms to DSMs (as in Kumar et al., 2020), but these analyses yielded similar over-

all patterns. Therefore, the present work focuses on the USF/SWOW-based models
based on S, PPMI, and RW measures.

We thank Simon De Deyne for sharing the code for computing these association spaces.

7. Although some boards had more powerful distractors than others, we piloted these
boards to ensure that there were no obvious competitors to the target word pairs within
the boards. Future work will examine the influence of board-level differences on behav-
ioral performance.

8. Although the program only scored an exact string match as the correct response, we
adjusted for spelling errors manually after the experiment and scored those responses
as correct in all analyses.

9. The r.squaredGLMM function gives marginal and conditional estimates of R> for
mixed-effects models and a single estimate for linear regression models. Both esti-
mates are reported wherever mixed-effects models are used.

10. We explicitly focus on search processes relevant to the target words in the current paper,
although in other work, we investigate the effect of the words on the boards (see Kumar
et al. 2021).

11. Partial string matches or clues found within multi-word model predictions were scored
as a correct prediction (e.g., old age vs. age, mathematics vs. math, etc.). Additionally,
plurals or variants of the target words (e.g., exams, drums, etc.) were removed from
model predictions.

o
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