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Abstract

Context-sensitive communication not only requires speakers
to choose relevant utterances from alternatives, but also to
retrieve and evaluate the relevant utterances from memory in
the first place. In this work, we compared different proposals
about how underlying semantic representations work together
with higher-level selection processes to enable individuals
to flexibly utilize context to guide their language use. We
examined speaker and guesser performance in a two-player
iterative language game based on Codenames, which asks
speakers to choose a single ‘clue’ word that allows their
partner to select a pair of target words from a context of
distractors. The descriptive analyses indicated that speakers
were sensitive to the shared semantic neighborhood of the
target word pair and were able to use guesser feedback to
shift their clues closer to the unguessed word. We also for-
mulated a series of computational models combining different
semantic representations with different selection processes.
Model comparisons suggested that a model which integrated
contextualized lexical representations based on association
networks with a contextualized model of pragmatic reasoning
was better able to predict behavior in the game compared
to models that lacked context at either the representational
or process level. Our findings suggest that flexibility in
communication is driven by context-sensitivity at the level of
both representations and processes.

Keywords: semantic retrieval; memory search; pragmatic in-
ference; contextualized word representations

Introduction
Accumulating evidence suggests that efficient communica-
tion requires flexibility across contexts (Sperber & Wilson,
1986; Clark, 1996; Goodman & Frank, 2016). But where
should contextual flexibility enter into models of communica-
tion? One possibility is that flexibility is supported at the rep-
resentational level. For example, individuals may utilize dis-
tributional statistics from natural language to distill context-
relevant information directly into the structure of their high-
dimensional semantic representations (as suggested by recent
models of semantic memory; Kumar, 2021) or lexical associ-
ation networks (as suggested by recent network-based mod-
els; De Deyne et al., 2021). Alternatively, context-sensitivity
may arise at the process level. For example, speakers may use
context to prioritize different retrieval cues, or re-weight dif-
ferent utterances post-retrieval based on pragmatic inferences
about the communicative goal at hand.

Context-sensitivity likely reflects contributions at both the
representational and process levels. Therefore, disentangling
these contributions requires an appropriately rich experimen-
tal paradigm exposing the richness of our semantic represen-
tations. Reference games — where speakers must produce
a referring expression that distinguishes a target object from
a context of distractors — have been widely used to oper-
ationalize context-sensitivity in communication (e.g. Olson,

1970; Dale & Reiter, 1995). These games typically present
a visual context, such as an array of images, to evaluate ac-
counts of grounded semantic representations and pragmatic
reasoning (e.g. Degen et al., 2020). Yet it has been challeng-
ing to evaluate theories of subtler associative and distribu-
tional relationships among different words using these visual
contexts. Recently, Kumar, Steyvers, & Balota (2021) intro-
duced a paradigm called Connector, a simplified variant of
the board game Codenames (Chvátil, 2016), which used large
referential contexts of other words rather than images. Rather
than referring to a single target, participants must refer to sets
of targets (see Xu & Kemp, 2010 which examined a game
called Password cuing a single target word rather than a set).
This task therefore require participants to use richer seman-
tic and conceptual relationships between words to guide their
language use.

For example, on the trial depicted in Fig.1, the Speaker is
presented with the target pair tiger-lion and asked to gener-
ate a one-word clue that would allow the guesser to select
that pair. Their clue “cat” is transmitted to the Guesser, who
is then asked to select exactly two words from the 20-item
board (e.g., clever-lion). If their first attempt is unsuccessful,
Speakers have two more attempts to provide two additional
clues to the Guesser. Importantly, unlike the variant of Co-
denames recently explored by Shen et al. (2018), Connector
does not place any hard constraints on word choice, allow-
ing us to track natural search and retrieval processes across
the entire lexicon. As such, Connector represents an ideal
paradigm to elicit rich, context-dependent communication. In
this paper, we used these data to evaluate different propos-
als for how semantic representations and selection processes
work together to enable flexible language use.
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Figure 1: Example trial in Connector. The target pair (tiger-
lion) is highlighted for the Speaker. Their first clue, “cat,” led
to an incorrect response. This feedback was used to adjust the
clue to “predator,” allowing the Guesser to correctly identify
the pair.



Table 1: Examples of clues provided by the Speaker

Word pair Top 3 clues (frequency)
lion-tiger cat (24), animal (5), feline (4)

exam-algebra math (22), test (3), school (2)
war-quiet peace (5), fight (3), ceasefire (2)

Methods
Behavioral Data
We evaluated our models on a dataset of Connector games
played by 75 dyads (150 participants). Each game consisted
of 30 trials, with a different pair of target words on each trial.
These word-pairs were presented in a sequence of 10 blocks,
with exactly 3 trials per block. The presentation of the word-
pair cue to the speaker was counterbalanced (e.g. between
lion-tiger and tiger-lion) to control for possible salience ef-
fects. Each block used a distinct board with different sets
of words. The overall sequence of trials was fixed across all
pairs, and the set of target word-pairs were chosen to reflect
varying levels of difficulty, computed via averaging similarity
estimates across different semantic models (see Kumar et al.,
2021, for details). We aggregated data across two different
experiments, for a total of 60 word pair items and an aver-
age of 18 unique clues generated per word pair (SD = 6.89).
Participants achieved an overall success rate of 85% across
the three attempts, reflecting relatively high accuracy overall.
Table 1 provides some examples of clues generated by the
Speaker for different target pairs1.

Candidate Models of Semantic Representation
Communication depends on the underlying semantic repre-
sentations of words, and different proposals of representa-
tional models exist in the literature. We considered 3 different
representational proposals in our analyses: two large distri-
butional models, GloVe and BERT, as well as an associative
network model based on the Small World of Words (SWOW)
dataset. These models include representations for a large vo-
cabulary of 12,218 words2. In this section, we introduce each
of these models in detail.

GloVe Distributional semantic models (DSMs) assume that
individuals extract statistical regularities from natural lan-
guage to construct semantic representations, which can be
inferred from large text corpora. We utilized one such
DSM, GloVe (Pennington, Socher, & Manning, 2014)3. We

1All data and analysis scripts have been made available at
https://github.com/hawkrobe/connector cogsci

2To equate these models, we restricted GloVe and BERT to the
12,216 unique cues in SWOW database, supplemented with each of
the words on the board and all valid clues (excluding multi-word
responses, < 1% of total trials) produced by speakers in our dataset.

3Initial analyses also included another distributional model,
word2vec, but we focus on GloVe for simplicity, as it performed
better overall. See Kumar et al., under review for additional com-
parisons.

obtained 300-dimensional GloVe embeddings from a pre-
trained model, trained on a 3 billion-word Wikipedia corpus
available from Kutuzov, Fares, Oepen, & Velldal (2017).

BERT Although semantic representations are often as-
sumed to be “non-contextual” (as in GloVe), there are now
several modern language models that learn contextualized se-
mantic representations. In these models, vector representa-
tions for words are learned by attending to not simply word
co-occurrence patterns, but also predicting upcoming words
within sentential contexts by using positional and syntactic
information. Therefore, we also evaluated whether a state-
of-the-art contextual word embedding model, BERT (Devlin,
Chang, & Lee, 2019) can account for Speaker and Guesser
utterances in Connector. To obtain BERT embeddings, we
used the BERTModel provided by HuggingFace (Wolf et
al., 2019), trained on a ≈ 3.8 billion corpus, to obtain 768-
dimensional embeddings. Embeddings were obtained by pro-
viding each word in the search space to the BERT model via
the prompt, ”[CLS] word [SEP]”, and summing the vectors
from the last four hidden layers for each token, as is typi-
cally recommended (McCormick & Ryan, 2019). Note that
even though these BERT embeddings are not contextualized
with respect to the Connector game, the learning mechanisms
behind BERT and GloVe considerably differ. Therefore,
the present analyses evaluated how these de-contextualized
BERT embeddings compare to GloVe, and an associative net-
work model.

Small World of Words (SWOW) It is possible that distri-
butional information from text corpora is insufficient to ac-
count for flexible language use. Indeed, significant recent
work has shown that associative models, typically based on
free association norms, often outperform DSMs in seman-
tic tasks (De Deyne et al., 2019). Therefore, we also eval-
uated whether an associative representation model, based on
the SWOW dataset can better account for performance in
this task4. SWOW embeddings were obtained by converting
the raw associative frequencies for the different cues in the
SWOW dataset into a 300-dimensional random walk-based
word association space (Kumar, Steyvers, & Balota, 2021).

Candidate Models of Speaker Selection Strategies
Representations and selection strategies are inextricably tied
to each other: any communicative action is a combination
of a specific selection strategy operating over underlying se-
mantic representations. Therefore, in the current paper, we
considered all combinations of the representational models
described above with different models of selection to evalu-
ate whether individuals consider only the retrieval cues (i.e.,
target word pair), or take into account possible distractors on
the board.

4The SWOW dataset is based on a continued free association
task, where participants are given a cue and produce the first 3 words
that come to mind, see https://smallworldofwords.org/

https://github.com/hawkrobe/connector_cogsci
https://smallworldofwords.org/


All selection models are based on a 12218-word lexicon
where the similarity between any two words can be computed
as the cosine distance between their vector embeddings in the
given representational space:

s(wi,w j) =
~wi ·~w j

‖~wi‖‖~w j‖
. (1)

Target-only Speaker Our simplest speaker model prefers
clues c that maximize similarity to the two words in the target
pair {w1,w2} while minimizing similarity to all other words
B = B−{w1,w2} that are not in the target pair:

UB(c;{w1,w2}) = α · s(c,w1) · s(c,w2)− (1−α) ·∑
b∈B

s(c,b)

(2)
where α∈ [0,1] is a parameter controlling the influence of the
distractors. For comparison to more sophisticated probabilis-
tic models, we score clues according to a softmax over this
utility, where β is a temperature parameter which was fine-
tuned to fit the data for each choice of semantic representa-
tion. We call the special case where α = 1 the target-only
model. Under this setting, the agent completely ignores the
distractors and only concentrates on maximizing similarity to
the target pair.

Target+Board Speaker When α < 1, there is a non-zero
influence of the rest of the board on the speaker’s choice. For
example, if the speaker is given the target word pair lion-tiger,
they may initially want to use the clue dangerous, since it is
semantically related to both target words. However, if they
are paying attention to the set of distractors, they may real-
ize that it is also semantically related to the distractor snake,
and therefore prefer a clue like cat that better minimizes the
second term of Eq. 2. We parametrically varied α to find the
level of distractor influence that best fits the data.

Pragmatic Speaker Finally, it is possible that context-
sensitivity emerges through explicit pragmatic reasoning
about alternatives, which accounts for the Guesser’s decision
processes. Specifically, we formulated a model of our task
within the Rational Speech Act (RSA; Goodman & Frank,
2016) framework, according to which a pragmatic Guesser
G1 recursively reasons about a pragmatic Speaker S1, who in
turn recursively reasons about a literal Guesser G0. For the
literal guesser G0, we computed the likelihood of selecting
any pair of words {w1,w2} on the board B, given a clue c,
using a product semantics:

Gliteral({w1,w2}|c,B) ∝ exp{s(c,w1) · s(c,w2)} (3)

Intuitively, a pair {w1,w2} is only a good candidate if both w1
and w2 are semantically related to the clue. For the pragmatic
Speaker S1, we computed the probability of selecting every

possible word as a tradeoff between its informativity to the
literal guesser and its retrieval cost:

S1(c|{w1,w2},B) ∝ eβ lnGliteral({w1,w2}|c,B)−wc·cost(c) (4)

where cost(c) captures biases towards selecting more acces-
sible words from the search space (operationalized via word
frequency) and β again captured the temperature of the soft-
max distribution. We fine-tuned cost weight wc ∈ [0,∞] and
β ∈ [0, ] parameters separately for the different representa-
tional models to maximize the likelihood of the data.

Candidate Process Models of Guesser Flexibility
For the Guesser task of selecting a word-pair from the board
given a particular clue, we evaluate whether the representa-
tional similarity of different words on the board to the given
clue influences Guesser choices. In addition, we also obtain
pragmatic predictions via RSA models to evaluate whether
Guessers incorporate the Speakers’ perspectives into their se-
lection process.

Baseline Guesser For the Guesser task, the baseline model
predictions corresponded to G0 in Eq. 3, where we maxi-
mized the product of similarities of the given clue to the dif-
ferent pairs of words on the board.

Pragmatic Guesser The context-sensitive Guesser G1 con-
siders not only the absolute relatedness of the clue to the
words, but also the possible alternative clues that the Speaker
could have provided. For example, a pragmatic guesser may
reason that if the Speaker had intended to identify the target
pair snake-tiger they would be more likely to say something
like striped rather than the given clue; because they didn’t
say striped, they must not have intended that pair. To formal-
ize this reasoning, we computed the probability of selecting
{w1,w2} given a clue c and board B as follows:

G1({w1,w2}|c,B) ∝ S1(c|{w1,w2},B)P({w1,w2}) (5)

where P({w1,w2}) is the prior probability of selecting any
two given words on the board in the absence of any clue. We
assumed a uniform prior over all words on the board.

Behavioral Results
Before fitting these models to our data, we first characterize
two basic qualitative patterns of context sensitivity in speak-
ers’ choices. First, to what extent were speakers able to find
clues that accounted for both words in the target pair? Sec-
ond, when the first clue did not lead to a successful response,
were speakers able to adjust their second clue to be sensitive
to their partner’s errors?

How do speakers integrate words in target pair? Our
task requires speakers to choose a single clue from their vo-
cabulary that allows their partner to select a pair of targets



Figure 2: The first clue tended to be closer to one of the tar-
get words in all semantic representations. Within the SWOW
and GloVe models, the clue was closest to the midpoint of the
target pair when the words within the pair were close them-
selves. Error bars represent 95% confidence intervals.

on the board. How do speakers simultaneously integrate con-
straints from both words in the target pair? We hypothesized
that speakers aim to select clues are as semantically similar
as possible to each component target word without sacrific-
ing similarity to the other; in other words, clues ought to be
closer to the semantic “midpoint” of the target pair than to
either of the targets considered separately. We tested this hy-
pothesis by computing cosine similarities between the vec-
tor embeddings of the clue (e.g. c1 = cat) and the two
component words in the target pair (e.g. w1 = tiger and
w2 = lion, respectively), as well as to the midpoint of the
pair, (w1 +w2)/2.

Because the order of the two words in the pair was not
meaningful, we assigned w1 to be the further of the two words
from the clue and w2 to be the closer. Next, we fit a linear
mixed-effects model with random effects at the participant
and word-pair level to evaluate the null hypothesis that the
clue was equidistant from the two words (i.e. that s(c,w1) =
s(c,w2)). For all three choices of representational semantics,
we found a significant violation of symmetry, suggesting that
the first clue was typically closer to one word than the other
(p’s < .001, see Fig. 2). Furthermore, as shown in Fig. 2,
we also found that the first clue was closer to the midpoint
only in the BERT model (p<.001), and in fact showed the
opposite effect in the SWOW model (p <.001), and did not
show a significant effect in the GloVe model (p = .381).

To further investigate this effect at the item level, we ex-
amined whether the similarity between the words within the
word-pair influenced the extent to which first clues were
closer to the midpoint. We categorized the word-pairs into
three levels: “close” (e.g., lion-tiger), “medium”(e.g., gig-
gle-abnormal), and “distant”(e.g., void-couch), based on av-
eraged cosine similarities between the words across a range
of semantic models (see Kumar et al. for details). Next, we
tested whether the first clue was significantly closer to the
midpoint as a function of semantic distance via mixed ef-

Figure 3: Across all semantic representation models, the sec-
ond clue was closer to the unguessed word, compared to the
guessed word, and was close to the centroid of the target pair
when the words were close themselves, within the SWOW
and GloVe models. Error bars represent 95% confidence in-
tervals.

fect models. Indeed, as shown in Fig. 2 (right panel), clues
were closest to the midpoint when words themselves were
”close” in semantic space compared to ”medium”, although
only SWOW (p<.001)and GloVe (p = .013) models showed
this effect. On the other hand, the BERT model was not
sensitive to these item-level differences, likely due to over-
all high cosine similarities which may be indicative of ceil-
ing effects. Overall, however, these analyses suggest that
the proximity of the target words within semantic space di-
rected Speaker choices, i.e., when words were semantically
distant, it was harder to select clues that were “equidistant”
from both words, compared to when words were semantically
close and the selection pool itself was optimally constrained
for the Speaker to choose clues that were closer to both words.

Do Speakers adjust their clues based on Guesser feed-
back? Next, to understand how guesser feedback affected
the speaker’s choices, we considered the trials where guessers
successfully identified only one of the words. Consistent with
Kumar et al.’s findings, when players correctly guessed one
of the words, the second clue given by the Speaker was more
similar to the unguessed word than to the guessed word (p
< .001) in all the models. In addition, the second clue was
closer to the “centroid”, (w1 +w2 + c1)/3, compared to ei-
ther of the target words in the BERT and GloVe models, but
showed the opposite effect in the SWOW model (p’s < .001).
When examining this effect at the item level, when the words
within the target pair were themselves close, the second clue
remained close to the centroid (see Fig. 3) in the SWOW
(p = .008) and GloVe (p = .04) models. Therefore, Speak-
ers attempted to produce clues that were most similar to the
global intersection of the two words and the first clue when
the words were semantically close, but also switched their
proximity to either word within that intersection, based on
the Guesser’s responses (see Fig. 4).
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Figure 4: An example illustrating the effect of Guesser re-
sponses on Speaker clues using GloVe embeddings. The
Speaker selects stop as Clue1 from the global intersection of
beginning and brake. When Guesser successfully identifies
brake, the Speaker selects Clue2 (start) that is closer to both
the unguessed word (beginning), and farther from the guessed
word (brake).

Model Comparison
Having established these basic patterns of targeted search
within semantic space, we next turn to the problem of pre-
dicting the first clue speakers choose to send, and the first
pair that guessers select in response. In this section, we con-
duct a quantitative model comparison evaluating the extent to
which different combinations of representational models and
process models successfully account for Speaker and Guesser
behavior.

Speaker Predictions For the Speaker task, three measures
were computed. First, as an overall measure of fit, we com-
puted the log likelihood of the data under each model. Sec-
ond, as a more interpretable measure of absolute performance
we computed the top-5 accuracy, measuring the proportion
of clues in our data that fell within the top 5 predictions pro-
duced the model5. Table 2 shows some examples of clues
correctly predicted by one representation/process model com-
bination but not another.

Finally, as a more interpretable measure of whether each
model captured the full distribution, we calculated the mean
rank of each clue produced by speakers. In other words, each
model produced a full ranking over all 12218 words in the
vocabulary, and we examined where the clues that were ac-
tually produced fell in that distribution. Lower ranks indicate
better performance across the entire distribution of Speaker
responses.

5We used the top-5 criteria because the first few predictions by
the models were often the target words (e.g., jump or leap) or varia-
tions of the target words(e.g., jumping or leaping)

Table 2: Examples of clue predictions

Word-Pair/Modal-Clue Representation/Process Prediction

feet-chapel /kneel SWOW/Target-only kneel
BERT/Target-only pilgrimage

exam-algebra / math SWOW/Pragmatic math
BERT/Target-only calculus

We found three key patterns in these analyses (see Ta-
ble 3). First, the associative SWOW-based representations
strictly outperformed other representational models in pre-
dicting Speaker utterances (p’s < .05). Second, Speakers
mainly prioritized similarity to words within the target pair
when retrieving clues, rather than prioritizing distance from
distractors, as indicated by higher values of α providing a bet-
ter overall fit; see Fig. 5. Finally, the pragmatics-driven RSA
model, combined with the SWOW representation model, pro-
vided the best fit to the data overall. Further, the pragmatic
model was also the best-performing model for the BERT
model based on log-likelihoods, but this pattern did not hold
for the GloVe model.
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Figure 5: Average (log) rank of empirical clues in full ut-
terance distribution produced by each model. Boxplot repre-
sents distribution over 60 wordpair items. Dotted lines repre-
sent upper and lower bounds. RSA model shown in blue.

Guesser Predictions For the Guesser task, we similarly ob-
tained the top-5 accuracy, mean ranks, and log likelihood
scores for each representational and process-level model. Ta-
ble 4 displays the predictions scores and log-likelihoods for
the literal and pragmatic Guesser models for each of the
representational models. As shown, the SWOW-based as-
sociative model again performed better than the other rep-
resentational models in predicting Guesser responses. Log-
likelihood scores also indicated that the pragmatics-driven
model provided a better fit to the overall data across all mod-
els, although the accuracy and rank measures did not appear
to show a benefit of incorporating pragmatics-driven informa-
tion.



Table 3: Model prediction scores for the Speaker’s first clues

Representation Process Model Optimal Parameters Top-5 Accuracy (95% CI) Mean Rank (95% CI) Log-Likelihood
GloVe Target-only β = 21, α = 1 .09 (.05-.13) 798.64 (694-933) -15773.48

Target+Board β = 21, α = .9 .10 (.06-.14) 792.03 (686-917) -15846.85
Pragmatic β = 22, cost = 0.04 .06 (.03-.09) 876.67 (769-987) -15990.86

BERT Target-only β = 20, α = 1 .03 (.02-.04) 3182.88 (2862-3485) -18636.95
Target+Board β = 20, α = .8 .03 (.02-.05) 2598.26 (2319-2878) -18752.26

Pragmatic β = 30, cost = 0.03 .02 (.01-.03) 1784.70 (1590-1999) -17533.20
SWOW Target-only β = 23, α = 1 .16 (.11-.22) 336.43 (263-421) -13204.00

Target+Board β = 23, α = .9 .16 (.11-.21) 336.21 (264-414) -13287.74
Pragmatic β = 25, cost = 0.04 .21 (.15-.26) 361.17 (299-425) -12895.74

Table 4: Model prediction scores for Guesser’s first responses

Representation Process Model Top-5 Accuracy (95% CI) Mean Rank (95% CI) Log-Likelihood
GloVe Baseline .17 (.15-.19) 25.29 (23.71-25.32) -8140.96

Pragmatic .13(.11-.13) 26.72 (24.93-28.52) -10343.96
BERT Baseline .09 (.08-.10) 58.60 (56.38-61.05) -9385.38

Pragmatic .09 (.07-.10) 43.98 (41.74-46.19) -10468.63
SWOW Baseline .43 (.41-.45) 9.23 (8.33-10.17) -10144.16

Pragmatic .31 (.29-.33) 20.11 (18.25-21.94) -6665.27

Discussion

Communication is a complex behavior that requires attend-
ing to environmental cues as well as initiating search and re-
trieval processes that operate on underlying knowledge rep-
resentations to ultimately achieve a specific goal. Contextual
flexibility is a key property of efficient communication, that
enables speakers and listeners to efficiently convey meaning-
ful information to each other within a shared context. This
paper evaluated different representational and process-level
models of contextual flexibility, to assess the contribution of
retrieval context, representation, and pragmatic information
in explaining communicative behavior in a cooperative lan-
guage game, Connector.

We first descriptively examined the extent to which differ-
ent representational models can capture Speaker and Guesser
behavior in the game. We found that in the face of multiple re-
trieval cues (i.e., the word pair), Speakers limited their search
space to the common neighbors of the two cues. The simi-
larity between the cues also affected the search space, in that
greater similarity between the individual words significantly
restricted the retrieval context. We also found that the global
context defined by the cues changed relative to the clues pre-
viously retrieved. Additionally, on trials where Guessers cor-
rectly identified one of the words, Speakers produced clues
that would guide the Guesser towards the unguessed word.
Taken together, these results suggest that Speakers were sen-
sitive to the retrieval cues and produced clues that optimized
communication. Furthermore, we found the representational
model BERT was least sensitive to these descriptive patterns,
likely due to ceiling effects and the lack of finetuning.

Our model comparisons indicated that an associative
model (SWOW) combined with a pragmatic search and re-
trieval model (RSA) best accounted for Speaker and Guesser
performance in the game. With respect to representation-level
flexibility, it is important to mention here that the associa-
tive SWOW model is based on behavioral free association
data, and therefore captures conceptual representations that
may be activated in an associative task. As such, the Speaker
and Guesser tasks are also associative in nature. Therefore, it
is possible that the SWOW model provides the best account
of the data partly due to shared method variance, in addi-
tion to capturing non-linguistic, hierarchical information that
is difficult to extract via pure text-based distributional mod-
els (see Kumar et al., under review for detailed arguments).
In this light, associative models such as the SWOW model
may be viewed as an empirical ceiling for model compar-
isons, and one can then evaluate how well models not based
on behavioral norms compare to this baseline. Indeed, we
find that the GloVe model performs significantly better than
the BERT model in the Speaker and Guesser tasks. How-
ever, it is important to highlight here that the BERT model
used in the present work represents an entirely non-contextual
model, i.e., although BERT is trained to attend to contex-
tual information in text, we did not provide any task-specific
context to BERT, but instead used “context-free” BERT em-
beddings in this work. It is possible that BERT would be
able to generate more reasonable predictions when embedded
within task-relevant linguistic contexts, and exploring contex-
tualized BERT embeddings within communicative contexts is
an avenue for future work.



With respect to process-level contextual flexibility, our
analyses indicated that Speakers prioritized the retrieval con-
text of the word-pairs significantly more than the surround-
ing context of distractors, when generating clues. Further-
more, the pragmatic model-based analyses indicated that both
the Speaker and the Guesser benefited from pragmatic infor-
mation about the communicative context. It is important to
mention here that the pragmatics-driven model inherently ac-
counted for the board, and in fact generated predictions that
were quite similar to context-sensitive Speaker model that
prioritized the word pairs but also incorporate the board to
some extent (e.g., α > 0.8). In addition, error analyses in-
dicated that when words were relatively dissimilar or diffi-
cult (e.g., communicate-cooking), Speakers chose clues that
were more related to one word than the other in such cases
(e.g., food) – i.e., Speakers were no longer picking “ratio-
nal” clues but instead choosing clues purely based on associa-
tive information from one of the words. Finally, with respect
to the Guesser, although the accuracy and rank metrics did
not show a benefit of the pragmatic model, the log-likelihood
scores showed that the pragmatic model provided a better fit
overall. This may reflect the relatively lower variance in re-
sponses produced by the Guesser, as well as the lack of sepa-
rate fine-tuning parameters for the Guesser, as we prioritized
fine-tuning the Speaker parameters which were then directly
fed into the pragmatic Guesser model. Exploring independent
optimality parameters for the Guesser as well as identifying
specific contexts in which players prioritize suboptimal re-
sponses and differentially weight the perspective of the other
player are avenues for future research in this domain.

Overall, the present findings suggest that players are sensi-
tive to semantic neighborhoods as well as the perspective of
the other player in communicative contexts. Therefore, flex-
ibility in communication is driven by sensitivity at multiple
levels, i.e., at the representational level in the form of asso-
ciative information, and at the process level in the form of
retrieval context and pragmatic information.
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